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A method of obtaining a bounded feedback which stabilizes a linear dynamical system is described. The attainment of a positional 
solution of a special auxiliary linear-quadratic problem of optimal control using an optimal regulator is the basis of the method. 
The results are illustrated for the well-known problem of the stabilization of a pendulum in the upper unstable position by means 
of inertial controls. © 1998 Elsevier Science Ltd. All rights reserved. 

It has been established [1, 2] that the optimal feedback-type control for the linear-quadratic problem 
of the construction of regulators with an infinite horizon is stabilizing feedback. The simplicity of the 
synthesis of a feedback-type control for a linear-quadratic problem with a finite horizon suggests the 
use of these solutions to stabilize unstable linear systems [3, 4]. It has been found that controls which 
minimize quadratic functions on the trajectories of non-linear systems also possess stabilizing properties 
[5]. The principal difference in the papers [3-5] lies in the fact that, while it is proposed in [3, 4] that 
well-known solutions of a linear-quadratic problem with a finite horizon are used as the stabilizing 
controls, only the stabilizing properties of feedback are proved in [5], without indicating any method 
of constructing the stabilizing control. 

The main results in this paper are a proof of a single principle for constructing stabilizing feedbacks, 
a method for designing stabilizers which are constructed in accordance with this principle and an 
investigation of cases when the principle of sliding control ensures the asymptotic stability of the terminal 
set. Some analogies between feedback theorems in the theory of stability which guarantee the existence 
of Lyapunov functionals and practical methods for constructing such functions are noted. The result 
presented in this paper can be treated as a practical method of constructing Lyapunov functions using 
optimal control theory. Here, the emphasis is not placed on obtaining explicit expressions for the above- 
mentioned functions but rather on the possibility of the effective use of implicit expressions for the 
functions by appropriate computer calculations. In this approach, constructions in real time, which is 
natural when investigating real processes, play a decisive role, 

By virtue of the specific details of the optimal control problems which are used, direct (geometric) 
constraints on the control were not taken into account when solving stabilization problems [1-5]. These 
were taken into account in the stabilization methods in [6, 7], on the basis of which special linear optimal 
control problems and a method of obtaining the optimal feedback using regulators [8, 9] were formulated. 

The aim of this paper is to describe a method for stabilizing linear dynamical systems using regulators 
(stabilizers) which produce optimal feedback in a special linear-quadratic optimal control problem. The 
main difference from the approach which has previously been adopted [1-5], where a linear-quadratic 
optimal control problem was also used, is the fact that direct (geometric) constraints on the control 
are taken into account here. 

1. F O R M U L A T I O N  OF THE PROBLEM 

Suppose the behaviour of a dynamical system with a control in the interval t I> 0 is described by the 
equation 

Jc=Ax+bu,  x(0) = Xo ;~0 (1.1) 

( x e R n ,  ueR;  rank(b, Ab ..... An-lb)=n) 
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where x = x(t) is the state of the system at the instant of time t, u = u(t) is the value of the control 
action, and A and b are a constant matrix and a constant vector of corresponding dimensions. 

We shall assume that the system is unstable when the control is disconnected (u(t) --- 0, t ~ 0). It is 
well known that the classical stabilization problem consists of finding a feedback u = u(x), x ~ R" 
(u(0) = 0) such that system (1.1), which is closed by it 

k = A x + b u ( x ) ,  x(0)=x  0 (1.2) 

possesses the following properties: 
1. there are solutions which are extended to t >t 0 in the neighbourhood of the equilibrium state, 

x =  0; 
2. its zeroth solution is asymptotically stable in the Lyapunov sense. 
In many applications only bounded controls are permissible, due to technical requirements. Hence, 

additional direct constraints I u(x) I ~< L (0 < L < oo) are imposed on the stabilizing controls in modem 
formulations of stabilization problems. 

The problem of constructing a stabilizing feedback of the following type is investigated below, taking 
account of this constraint. Suppose that G c R n is a certain neighbourhood of the equilibrium state 
x = 0 of system (1.1) and that L, 0 < L < oo is a specified number. We call the function 

u(x), x ~ G (u(O) = O) 

a (bounded) stabilizing feedback for the dynamic system (1.1) if 
1. the function (1.3) satisfies the constraint 

(1.3) 

lu(x) l ~ L, x~ G (1.4) 

2. dosed system (1.2) has a solution x(t), t I> 0 for allx0 e G; 
3. system (1.2) is asymptotically stable in G. 
It is well known that the constraints (1.4) are typical in the modern theory of optimal control. It 

is therefore natural to attempt to invoke optimal control methods to construct the required 
stabilizing feedback. A special optimal control problem is introduced in Section 2 for this purpose and 
the stabilizing feedback will subsequently be constructed using this problem. 

2. THE ASSOCIATED OPTIMAL CONTROL PROBLEM 

We will now select the parameter of the method 0, 0 < 0 < oo and consider the following linear- 
quadratic optimal control problem 

0 
V(z) = min! lu2(t)dt (2.1) 

k = A x + b u ,  x(0)=z (2.2) 

x(O)=o (2.3) 

I u(t)  I <~ L, t e T = [0, e ]  (2 .4)  

Problem (2.1)-(2.4) differs from the problems used in [1-5] for the purposes of stabilization primarily 
in the existence of the direct constraint (2.4) in the equation. Such a constraint was taken into account 
in [6, 7], but the associated optimal control problems were linear. 

We shall call the piecewise-continuous function (henceforth, t e T everywhere in Sections 2 and 3, 
unless otherwise stated) a permissible programme control of problem (2.1)-(2.4) if it satisfies the direct 
constraint (2.4), and the trajectoryx(t) = x(t I z) of system (2.2) corresponding to it falls, at a specified 
instantO, on the origin of the system of coordinates which corresponds to the terminal condition (2.3). 
The permissible control 

u°(O = uo(tl z) (2.5) 

and the trajectoryx°(t) = x°(t [z) of system (2.2) corresponding to it are called the optimal programme 
control and trajectory if the quality criteria (2.1) attain a minimum value along them. We know [10] 



Stabilization of linear dynamical systems by optimal controls of linear-quadratic problems 521 

that a neighbourhood of the origin of coordinates G exists such that an optimal control (2.5) of problem 
(2.1)-(2.4) exists for all points z E G. 

Following the classical definition of a feedback-type optimal control, we shall call the function 

uO(z) = u”(O I z), z E G (2.6) 

the optimal feedback-type start control. 
It is shown in this paper that the function (2.6) is a stabilizing feedback for system (1.1) (Section 5) 

and a method for obtaining it is described (Sections 3,4,6 and 7). 

3. OPTIMAL PROGRAMME CONTROL OF THE ASSOCIATED 
OPTIMAL CONTROL PROBLEM 

In the proposed method, the process of stabilization begins at the instant of time c = 0 with the 
programme solution u’(t) = u”(t 1 x0) (2.5) of problem (2.1)-(2.4) for the initial state z = x0 and, 
subsequently, only a continuous correction is made to the programme solutions. Since, for the state 
z = x0, problem (2.1-2.4) only contains aprioti information, the programme solution when z = x0 can 
be constructed up to the start of the stabilization process by a finite first-order method [ll, 12],t for 
example. 

We shall say that problem (2.1)-(2.4) is a simple problem if, when the ends_ti(z), i E P&z) = {s’(z) 
p(z)>* i.(z) i E PO(z) = (1, . . . 

6.:) belong to ‘T: the conditions 
, s*(z)} of the quasisingular segments of the optimal control 

g(cp’w - k,_, (z))l,=!i(z) + 09 i E PO(Z) 

&(~“(f)-k,(z))l,=~,,,?tO, i E PO(z) 

(3.1) 

are satisfied, where q’(t) = q”(t ) z) is a function defined by the relation 

r&f) = wO’(r)b (3.2) 

and w’(t) = w”(f 1 z) is the solution’(the cotrajectory) of the conjugate system \cr = -A’v, ~(9) = y, which 
correspond to the optimal n-vector of the potentialsy = y(z) and, in addition 

IcpO(t)lc L, t E ‘IO(z) =[g;(z),qz)l (3.3) 

io P(z) = (I,...,p(z)l 

lki(z)l=L, iEP,(z)=(s”(z),...,s*(Z)} 

CpO([i(Z)) = &_I (zh U’(t) i ki_[(Z)* f E T-([i(Z))* jE PO(z) 

CpO(c(Z)) = ki(Z), l&t) a&(z), t E T+@(z)), i E PO(z) 

where T-(t) is a small left-side neighbourhood of the point t, p(t) is a small right-side neighbourhood 
and the prime indicates the operation of transposition (the values of the terms so(z) and s*(r) are 
determined below). 

It is well known [ll, 121 that the optimal programme control u’(t) = u”(t 1 x0), which is continuous 
with respect to t, has the form 

I&) = -L, if Cpoct) < -L (3.4) 
UO(f) = L, if go(r) > L 

UOO) = #w, if I cpOct> I d L 

According to (2.6), to construct the stabilizing control of system (1.1) for the current statex(z) at an 

tSee also: LUBOCHKIN, A. V, Methods of solving convex optimal control problems. Candidate dissertation. Izd. Belarus. 
Gos. Univ., Minsk, 1987. 
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arbitrary current instant of time x >~ 0, it is necessary to know the solution of the associated problem 
(2.1)--(2.4) when z = x(x). But we will not solve this problem explicitly now. The essence of the new 
approach is as follows: The optimal programme control u°(t Ix(x)) for the state z = x(x) has the same 
form (3.4) as for the initial state z = x0. This control is defined by the set 

ti(x} = ti(x(x)), i e t0(x) = PoCx(x)) 

~i('t)--- ~i(x(x)), i ¢ pO(x) = po(j~(x) ) (3.5) 

y(x) = y(~x))  

which consists of the ends of the quasisingular segments belonging to the interval T, T~/(x) = T°i(x(x)), 
i e P(x) = e(x(x))  (3.3) and the vector of the potentials. Here, s°(x) = s°(x(x)) = 0 if tl(x) > 0; 
s°(x) = 1 if_tl(x) ~< 0 ~< tl(x); s*(x) = s*(x(x)) = p(x(t)) = p(x)  if ip(~)(x) < 0; s*(x) = p(x) - 1 if 

t_p(o(:) o <<. 
Hence, to construct the control u°(0 Ix(x)), x ~> 0, it is sufficient to have the elements of (3.5) at each 

instant of time x ~> 0. Equations which describe the behaviour of the elements of (3.5) are derived in 
Section 6 for this purpose and a method for solving these equations is proposed in Section 7. 

4. A S T A B I L I Z E R  

We will now assume that the optimal feedback (2.6) has been constructed. We close system (1.1) with 
it and consider the behaviour of the closed system 

5¢ = A x  + bu° (x )  (4.1) 

for the actual initial state 

s 

x(O) -- x o ~ G (4.2) 

We will denote byx*(t), t I> 0 the solution of Eq. (4.1) which corresponds to it. 
It can be seen that the function 

u*(t) = u°(x*(t)), t >>- 0 (4.3) 

is applied to the input of the system during the stabilization process, that is, the optimal feedback (2.6) 
is not fully used and only its values along the actual trajectoryx*(t), t/> 0 of system (4.1) are required. 
Furthermore, there is no need to know the value of u°(x*(x)) in advance, it being sufficient to have this 
value only at the actual instant of time x when system (4.1) is in the actual state x*(x). 

Next, we take a further three facts into consideration: (1) in many modern control problems, which 
make use of computer techniques, the control actions are not fed continuously into the input of the 
controlled system but at discrete instants of time with a certain time step, (2) the rate of actual processes 
is finite, (3) modem computer hardware has extremely high-speed devices available. Taking account 
of these facts, it is shown below that, in the case of many practical processes, existing computers enable 
one to realize the optimal feedback (2.6). 

We call function (4.3) the realization of the optimal feedback-type control corresponding to the initial 
state (4.2) and we will call the family of piecewise-continuous functions 

u*(h,t), t>~O, h--~O (4.4) 

of the form u*(h, t) - fs(t), t ~ [sh,(s + 1)h[(s = 0, 1 . . . .  ), where fs(t) is a function which is known up 
to the instant of time, t = sh, the discrete realization of optimal feedback in the closed system (4.1) 
with the initial state (4.2), if, for any x, 0 < x < oo 

lu'(t)-u'(h,t)Idt---)O as h--~0 
0 

For the chosen operating cycle h > 0, we shall call the element u*(h, t), t i> 0 of family (4.4), the h- 
realization of the optimal feedback for the initial state (4.2). 
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Definition. We call any device, which, for each fixed sufficiently small number h > 0, is capable of 
calculating the value of the function u*(h, t), t >I 0 in real time, a stabilizer. 

The concept of "a solution in real time" is explained in Section 7. 
In order to keep the discussion brief, we shall subsequently omit the dependence of the stabilizer on 

the selected parameter h > 0. 
Hence, the problem of working out the optimal feedback has been reduced to describing an algorithm 

for the operation of the stabilizer (Section 7). 

5. T H E  S T A B I L I T Y  OF T H E  C L O S E D  S Y S T E M  

Theorem. System (1.1), which is closed by the optimal feedback (2.6), is asymptotically stable in G. 

Proof. Suppose the dosed  system (4.1) is in the statex*(x) at an arbitrary instant of time x = sh(s = 
0, 1 . . . .  ). In this state, the quality criterion of the auxiliary problem (2.1)-(2.4) takes the value V(x*(x)). 
We shall show that V(x), x e G is a Lyapunov function. It is clear that it is continuous and that 
V(O) = O, V(x) > 0 whenx  ¢ 0. We will calculate its value at the pointx = x*(x + h). Forx*(r  + h), 
the value of V(x*(T + h)) is determined by the solution of problem (2.1)-(2.4) when z = x*(z + h). 
This problem is equivalent to the following 

'c+h+O I 
f ~u2(t)dt--~min,  x = A x + b u  

x * h  2 

x(X+h)=x*(x+h) ,  x ( x + h + 0 ) = 0  

lu(t)l~ < L ,  tE[ 'c+h,z+h+O] 

The last problem, in turn, is equivalent to the problem 

zih ~ '~+h+O ! 
(u °(tlx*(x)))2 dt + S -~u2(t) dt "-> min (5.1) 

x x+h "2 

x = A x + b u ,  x(x)=x*(X), x (x+h+O)=O 

u(t)=-u°(tlx*(x)), t~[x ,x+h[ ;  lu(t)l<L, t ~ [ x + h , x + h + O ]  

Since the control u(t) - u°(t Ix* (x)), t e [z, x + 0]; u(t) -- O, t e Ix + O, x + h + 0] is permissible in 
problem (5.1), the minimum value of the quality criterion of this problem does not exceed V(x*(x)) 

'i" (5.2) 
,f., 

Since, under the assumptions which have been made, the optimal control u°(t Ix* (x)), t I> T, t cannot 
identically vanish in any interval of finite length, the integral in (5.2) is positive and, consequently, 

+ h)) < 
Next, it can be shown using arguments which are typical in the Lyapunov theory of stability [13, 14] 

that V(x(*sh)) ~ 0 as s --> o% x*(sh) ---> 0 as s ---> o% from which it is easily shown that x*(t) ---> 0 when 
t ----> oo. 

Remark. In the proof of the theorem, the discussion has actually not been about feedback (2.6) but rather about 
its discrete approximation, which is introduced using problem (2.1)-(2.4) like feedback (2.6) but using piecewise- 
continuous functions with a quantization period h > 0. The stabilizing property of feedback (2.6) can also be proved, 
but the reasoning is complicated in this case. What is more, only the above-mentioned discrete approximation is 
used in the actual stabilization (see below) of system (1.1). For sufficiently small h > 0 (which is assumed in this 
paper), the transients in the system, closed by the feedback, or its discrete approximation are practically 
indistinguishable (the proof of this fact is fairly standard and is not given in this paper). 

6. T H E  D E F I N I N G  E Q U A T I O N S  OF T H E  S T A B I L I Z E R  

Suppose that problem (2.1)-(2.4) with z = x*(x) is simple in the case of the actual state x*(t) and 
that the equality 
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rank(h(t), t • To(x)) = n (6.1) 

holds, whereTo(z) = {t • T: I tP°(t) I < L} = 1.3 ]ti(x), ti(x)[, i E P(x); q)°(t [x*(x)), t ~ T is the function 
(3.2), h(t) = F(.0 - t)b, t ~ T, and F(t), t ~ T is the fundamental  n × n matrix of  the solutions of  the 
system k = Ax: F = AF,  F(0)  = E. We introduce the notat ion 

d ( t )  --- ~(~00 ( / )  - ki_ I ('c)) / ~t, d ( t )  .~ O ( ~ ° ( t )  - ki('c)) / ~t. 

and construct  the following numbers  and sets: the ends of the quasisingular segments  (3.5) 

t~(x) < t i(x) < ti+ ~ (x) < ti÷l (x) 

i • P(x)\Ip(z)} (6.2) 

the terms s°(x), s*(x) (see Section 3); ki(x) = - L  if ~o°(t) ~ -L ;  t E T~i (x) = [ti(x), t~+l(x)], ki(x) = L if 
q~°(t) >I L,  t ~ T*(x), i ~ P , (x ) ; / , (0 )  = 0 if tl(x ) > 0, l,(x) = 1 iftl(X) - 0, ] ,(z) = 0 i f t l (~  ) > 0, 7.(z) 

= 1 if tl(~) = 0, 1.(~) = 0 if tp(~)(x) < 0, 1.(x) = 1 if tp(~)(x) = 0 , / , (x)  = 0 if tp(,)(x) < 0 , / . (x )  = 1 if 
tp(~)(x) = 0, L(x) = {i ~ Po(x): d( t / (x))  = 0; i ~ P°(x): d6;(x)) = o} (we refer  to the intervals Z~i (x), 

i ~ P.(x)  as being non-singular). 
The  set S(x) = {p(x), s°(x), s*(Q; ki(x), i ~ P,(x); l,(x), L(x);_/*(x);/.(x); L(x)} is called the structure 

of  the opt imal  control. The structure is assumed to be non-degenerate  if [~(x) = _L(x) + L(x) + / * ( x )  
+ i* (Q + [L(x)  ] = O. 

Suppose  the structure S(x) = S(x0) is non-degenera te  at the instant • = x0. Using Cauchy's  formula, 
f rom the joining condit ions at the ends of  the quasisingular intervals of  the optimal control,  which is 
cont inuous  with respect  to t, and the conditions for satisfying the terminal constraint (2.3), we obtain 
that, when x = % the elements  of  (3.5) satisfy the equations 

q(ti(x); k~_t; y(x))=O, i • P o ;  r(~'i('t); ki; y (x) )=O,  i • P  ° (6.3) 

f(t_i(x); i • P o ;  ~('c), i • P ° ;  k i, i • P . ;  y(x); x * ( x ) ) = 0  

which are subsequent ly called the defining equations of  the stabilizer. 
Here  

q(t;ki_ ~ ;y) = y'h(t)  - ki_ ~, i ~ Po 

r(t;ki;Y) = y ' h ( t ) -  k i, i • pO 

f ( t i , i • P o ;  ?i, i e P ° ;  k i , i~P*;Y;X)= 

F(O)x + 
t~+l P 

= k i J hf t )dt+ ~, j h(t)h'( t)ydt 
i=sO ti i=1 t i 

p = p(x), s o = s°(x), s* = s*(x); k i = ki(x), i¢ P.  = P.(x)t_i= ti(x),  i • Po = Po(X); t~ = 

= ~i(x), i ~ P ° = P ° ( x ) ;  ~o=0,  if s o = 0;_t~=0, if s o = 1; t_p+t=0, if 

s * = p ;  ~t ,=0,  if s * = p - I  

For system (6.3), we calculated the Jacobian matrix H(x)  = H(t_i, i ~ P0; ti, i e pO; y), which consists 
of  the blocks 

HIl(t-i,i ~ Po;Y) = diag(-y'~t(t_i), i ~ Po), HI3(t-i ,t  ~ Po) = (h(t-i),i ~ Po)" 

H22([i,i ~ pO;y) = diag(-y'[ t( t i) ,  i ~ pO), H23([i,t ~ pO) = (h([i),i ~ pO), 

H33(ti,i ~ Po; ti,i ~ P°)  = ~ i h(t)h'(t)dt 
i=1 .ti 

(It(t) = F(O-  t)Ab, t • 7") 

(the remaining blocks are null matrices). 
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It can be shown that, since 1~(170) = 0 and relations (3.1) and (6.1) are satisfied, then detH(xo) ~ 0. 
According to the Implicit Function Theorem, it follows from this that, for 17 ~ T+(%), a unique continuous 
solution (3.5) of  Eqs (6.3) exists (here, S(x) = S(xo)). A method of solving Eqs (6.3) is described in 
Section 7. 

7. AN A L G O R I T H M  F O R  T H E  O P E R A T I O N  OF T H E  S T A B I L I Z E R  

Before describing the algorithm for the operation of the stabilizer, we will present a numerical method 
for solving its defining equations (6.3). 

We consider the interval ]x0, xl[, 171 > "CO ~> 0 for which I](17)_ = 0, x e ]170, 171[" We assume that the 
starting values P(17o), s°(17o), s*(170); ki(17o), i ~ P,(x0); _t i = t_i(xo), ti = ti(17o), i e P°(x0); Y(17o), are known 
for 17 = 170 and describe the simplest algorithm (which uses Newton's method) for solving the finite 
equations (6.3) for ~ ~ ]170, 171[, where p = p(xo), s o = s°(xo), s* = s*(x0); ki = ki(xo), i e P.  = e*(xo); 
e 0  = e0(170), = 

As in the numerical solution of ordinary differential equations, we shall construct an approximate 
solution of  Eqs (6.3) in the mesh 17o, 170 + h , . . . ,  170 + N0h = Xl, where h > 0 is a specific parameter. 
We will initially assume that the starting conditions are such that conditions (6.2) are satisfied. In this 
case, by virtue of  assumptions (6.1) and 1~(170) --- 0, we have detH(x0) ~ 0. 

Suppose that the sequence of solutions 

tO(X o + sh) = (t. i (x o + sh), i ~ Po; ~" (Xo + sh), i e pO 

y(x o+sh)) ,  s=O,1 ..... v - 1  

which corresponds to the sequence of  statesx*(x0 + sh), s = 0, 1 . . . .  , t~ - 1 is constructed, and that, 
for s = 0, 1 , . . . ,  o - 1 ,  the equalities 

f(t_i(Xo +sh),  i~Po;  i/(Xo+sh), i ~ P ° ;  k i , i~P. ;y (Xo  +sh); x*(Xo +sh) )=O 

q(t  i(x o + sh); ki_l; y(x o + sh)) = 0, i ~ Po 

r(~i(Xo + sh);ki; y('% + sh))=O, i e P ° 

are satisfied with a specified acc_ura_cy. 
To calculate the solution to(x), ~: = Xo + oh in the new state x*(xo + t~h), o ~ No we construct 

the vectors to t = ( t / ,  i e P0; ii t, i ~ pO; yt) (l --- 1, 2 . . . .  ,1o) 

and put 

t o l = ( t l = t i ( ~ - h ) ,  i ePo;  ~ . l = t i ( ~ - h ) ,  i ~ P ° ; y J = y ( ~ - h ) )  

tO t = tOt-i _ H-I (t~-I, i ~ Po; it-I, i ~ pO; yt-I )(q(t~-! ;ki_ t ;yt-I ), 

i~Po;  (r(~!-I;ki;Yt-I), i e e ° ;  f ' ( t~ - l , i ePo;  g - l , i ~ e ° ;  

k i, iEP . ;  yl-I; x*(~)))', / = 2 , 3  ..... l o 

(7.1) 

to(~)=to/o: ti(~)=t/to, i~Po;  ~i ( ~ ) = ~ito , i E po ; y( ~ ) = ytO 

By virtue of the well-known properties of Newton's method [15], we have: for any e > 0, sufficiently 
small h > 0 and sufficiently large lo = lo(h), functions ti(xo + sh), i ~ P0; ti(xo + sh), i ~ P°;y(x 0 + sh), 
s = 0, 1 . . . . .  No can be constructed such that, for s = 0, 1 , . . . ,  No, the inequalities 

Iq(ti('¢ o + sh);ki_i; y('c o + sh))l~ E, i E Po 

Ir(t/('c o +sh);ki; y(x o +sh)) l~ < I~, i ~ pO 

I I f ( t i (Xo+sh) ,  i~Po;  ~('¢o+sh), i e P ° ;  k l , i~P , ;  y('Co+sh); x*(x o + sh))ll~ < 

are satisfied. 
We will now consider different cases of  degeneracy of the structure of the control. An additional 

quasisingular (non-singular) segment can occur in the interval T at the instant of time z = Xl through 



526 R. Gabasov and A. V. Lubochkin 

its left end. The instant of entry 1; 1 can be found, following the value of (p°(0). If a quasisingular segment 
is added, then, when x > xl, in Eqs (6.3_), we replacep by/S = p + 1, s o b_y g0 = s o + 1 and s* by s* = 
s* + 1 and renumber the points t-i, i ~ P0; ti, i ~ ~o and the values k i, i ~ P,.  If a non-singular segment 
is added, we replace s o by g0 = s o _ 1 and determine the value of }o, using the value of tp°(0). In the 
rules for the solution of the defining equations (6.3), we only change the rule for calculating the vector 
co 1 (7.1): in the first case, we put t l  i = h for the components t l  i and, in the second case, we put_t ~ = h 
for tl. The quasisingular (non-singular) segment existing in T can leave through the left segment of T. 
The instant of departure xl is found using the value of t~(x)(_tl(x)). If the quasisingular segment departs, 
then we put/3 = p - 1, s -° = s o - 1, s* = s* - 1 and we renumber the points_t/, i e/30; ti 1, i e/30 and the 

values k i, i ~/3". If a non-singular segment departs, we put s -° = s o + 1. 
We deal with similar situations at the right-hand end of the interval T in an analogous manner. The 

appearance or disappearance of intervals within T is also possible. These situations are dealt with in a 
similar way to that adopted previously in [8, 9]. 

The algorithm for the operation of the stabilizer involves the following: when t ~ [0, h[, h > 0, the 
stabilizer uses the solution (2.5) of problem (2.1)-(2.4) for z = x0 (this solution can be constructed earlier 

• • , U E prior to the connection of the stablhzer): u (t) - u (t Ix0), t [0, hi. The algorithm for the operation 
of the stabilizer when t t> h is made up, for each [sh, (s + 1) h [(s = 1, 2 . . . .  ), of the following operations: 
(1) for a known actual state x*(sh) ,  the stabilizer, using the method described above, constructs the 
solution o~(sh) of Eqs (6.3) employing co((s - 1)h) as the initial approximation; (2) in the interval 
[sh, (s + 1)h[, the stabilizer uses the equation u*(t )  -- u°(t  - sh I x*(sh) ) ,  t ~ [sh, (s + 1)h[. 

On the basis of the well-known properties of Newton's method, it is easy to calculate the amount of 
work required to calculate the solution of the defining equations with a specified accuracy at an instant 
of time x subject to the condition that the known solution for the instant of time x - h is used as the 
initial approximation. If the available computer is capable of carrying out this work in a time not 
exceeding h units of real time, it is natural to assume that Eqs (6.3) are solved under real-time conditions, 
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and  this m e a n s  that  the  s tabi l izer  cons t ruc ts  the  rea l iza t ion  o f  the  f eedback  at  the  same  rate .  Clearly,  
the  a t t a i nmen t  o f  such a cond i t ion  d e p e n d s  on  the complexi ty  of  the  system u n d e r  cons ide ra t ion  and  
on  the  p o w e r  o f  the  c o m p u t e r s  used.  

8. E X A M P L E  

As an illustration, consider the problem [16] of stabilizing a pendulum in the unstable upper position of equilibrium 
using a moment applied to it on the suspension axis. This moment is worked out by a control mechanism which 
is an integrating circuit. The control mechanism, in its turn, is subject to a certain control action, u. The linearized 
equations of motion have the form 

k I - x  2, -~2=xl ' l -x3 ,  x 3 = u  (8.1) 

Plots of the implementation of the feedback u*(t) = u°(x*(t)), t >t 0, worked out by the stabilizer, the change 
in time of the Lyapunov function V(x*(t)), t >1 0 when h = 0, 01, 0 = 1, L = 10, and graphs of the corresponding 
components of the trajectoriesx*i(t), t i> 0, i = 1, 2, 3 are shown in Fig. 1. 

In the numerical experiment, the operator of the stabilizer was tested with a perturbation acting on the system. 
A system was considered which differed from (8.1) in that there was a term -cos  2t in the second equation. Graphs 
of the functions u*(t), V(x*(t)), xl(t),  x2(t) are represented by the solid lines in Fig. 2. The performance of the 
transients depends very much on the magnitude of the parameter 0. On account of this, an experiment was conducted 
using the following rule for the change in the parameter 0 in the stabilization process. Three numbers were selected: 
0* = 1, 0, = 0.4, h0 = 0.005. Initially, we put 0 = 0". If it turned out that V(x*(t)) > V(x*(t - h)), the value of 0 
was reduced by an amount h0 (here, in the case when 0 = 0,, the magnitude of the parameter  0 remained 
unchanged). The results obtained are represented by the dashed line in Fig. 2. 

It is seen from these graphs that control with a parameter 0 can turn out to be an effective means of increasing 
the effectiveness of the stabilization under permanent perturbations. 

We wish to thank  A.  Karbovski i  for  drawing our  a t ten t ion  to pape r s  [3-5]. 
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